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Abstract: 

              The present paper provides some solution for non – static conformally flat charged 

fluid spheres in Einstein - Cartan – Maxwell Theory in different cases. Here we have also 

found and discussed various physical and geometrical features of the models e.g. pressure, 

density, expansion rotation shear and field tensor 14F . It is seen that model (when 14F =0) is 

expanding, rotating but non –geodetic in general. Further in comoving co – ordinates and 

14F  0, then we get the model to be expanding with time but non – rotating and non – 

shearing. 
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1. Introduction: 

                           In recent years there has been shown a lot of interest in obtaining solutions 

for non – static conformally flat charged perfect fluid distribution with spherical symmetry 

in Einstein Cartan – Maxwell theory. Singh and Abdussattar [16] have obtained a non - static 

generalization of the Schwarzchild interior solution which is conformal to flat space – time. 

Chang [1] obtained some conformally flat interior solutions of the Einstein – Maxwell 

equations for a charged static sphere which is stable and these fulfill physical condition 

inside the sphere. Gurses [5] has shown that the Schwarzchild interior metric is the only 

conformally flat static solution of the Einstein field equations with perfect fluid distribution. 

Roy and Raj Bali [14] have found the solutions of Einstein’s field equations giving non – 

static spherically symmetric perfect fluid distribution which is conformally flat.Prassanna 

[12] has  described the Einstein - Cartan equations with special reference to a perfect fluid 

distribution following the work of Trautman and has found three solutions taking Hehl’s [7, 

8] view and Tolman’s [17] method . He has dicussed that a space –time metric similar to the 

interior Schwarzchild solution will no longer show a homogenous fluid sphere in the 

presence of spin density. Recently Kallyanshetti and Waghmode [9] taking the static 

conformally flat perfect fluid –disribution with spherical symmetry and obtained the field 

equations of Einstein – Cartan theory. They found. Some other reseachers in this field are 

Yadv et al. [18 ,19], Pandya et al. [13] Hansraj [6], Chaisi and Maharaja [2] , Dubey and 

Singh [3] , et al. Shee-D et al [15] and Manjonjo et al.[10 , 11]. In this paper we have studied 

the non – static spherically symmetric charged perfect fluid distribution with conformal 

flatness in Einstein –Cartan –Maxwell theory and have obtained solution of field equations 

in different cases. Theexplicit expression for pressure, density, expansion, rotation, shear 
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and non – vanishing components of flow vector iu  and field tensor 14F have also been 

obtained. It is seen that model (when 14F =0 ) is expanding , rotating , shearing but non – 

geodetic in general .However , if we use commoving co- ordinates and 14 0F   then we find 

that model representing the perfect fluid distribution is expanding with time but non – 

shearing . 

 
2. The Field Equations: 

                                    We consider a non – static conformally flat spherically symmetric 

perfect fluid distribution represented by the space – time metric. 

(2.1) 
2 2 2 2 2 2 2 2( sin )ds e dr r d r d dt         

Where  is a function of r and t alone. 

The Cartan’s equations are  

(2.2) 
i i l i l i

jk j lk k jl jkQ Q Q kS      

Where 
i

jkQ  and 
i

jkS  are the torsion tensor and spin tensors respectively. 

Also we have  

(2.3) 
i

jkS = 
i

jku S   

         with 0k

jkS u   

where 
iu  is four velocity vector. 

The only non – vanishing components of the spin jkS  is 23S K  (say). 

From the non – static condition , we have the velocity for vector  

            
i i

ju   , I , j = 1, 4 

Thus the non –zero components of 
i

jkS  are  

(2.4)   
1 1

23 32 23 1iS S u S    , K=K 

Therefore from Cartan’s equations the non – zero components of 
i

jkQ  

(2.5) 
1

23Q kK   and 
4

23Q kK   

For charged fluid the Einstein – Cartan –Maxwell equations are 

(2.6) 
1

8
2

ij ij ij ijR Rg g T      

(2.7) 
i i i i

jk j k k j jkQ Q Q kS      

http://www.ijmra.us/


 ISSN: 2249-0558 Impact Factor: 7.119  

 

119 International journal of Management, IT and Engineering 

http://www.ijmra.us, Email: editorijmie@gmail.com 

 

(2.8) 
1

2( ) ijg F
 
 

 
 , 

1

24 ( )ij J g   

(2.9) [ , ] 0ij kF   

where   is a  cosmological constant , i

jT  is the energy momentum tensor , 
i

jkQ  is torsion 

tensor , 
i

jkS is spin tensor , 
iJ  is the current four vector ijR  is the Ricci tensor and R the scalar 

of curvature tensor , k = 8 . 

 

            For the system under study the energy momentum tensor i

jT  has two parts viz . 
i

jT  

and 
i

jE  for matter and charges respectively i.e. 

                      i i i

j j jE T E   

(2.10) ( )i i i

j j jT p u u p       

 With  

(2.11) 1i j

ijg u u    

where p and   are pressure and density and 
iu = (

1u  , 0, 0, 
4u ) is the flow vector which 

describes the radiational motion of the fluid. 

                                          

                                           The electromagnetic enerfy momentum tensor 
i

jE  in terms of 

field tensor ijF  is given by  

(2.12) 
1

4

i i i

j j jE F F F F 

     

       Due to spherical symmetry the only non – vanishing components of field tensor ijF  are 

14F  

The above field equations for our metric are  

  (2.13) 
2 2

2 2 2 21 1 4
44 1 14

3 2 1
8 ( ) ( )

4 4 2
e k K p u pe e F

r

    
               

(2.14)  
2 2

21 4
11 44 148 ( )

4 4
e pe e F

r

   
          

(2.15) –
2

2 2 2 24 1 4
44 4 14

2 3 1
8 ( ) ( )

4
e k K e p u pe e F

r r n

     
               
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(2.16) 2 21 4
14 1 4

1
8 ( )

4 2
k K e p u u 

        

Equation (2.7) yields  

(2.17) 2 2

4 1u u e    2 2

1 4u u e    

In the above the suffices 1 and 4 denote differentiation with respect to tr and t respectively. 

From equations (2.13) and (2.14)  

 

(2.18) 
2

2 2 21 1
1 14 11

1
8 ( ) 2 ( )

2 2
p u e F k K e

r

  
           

From equations (2.11) and (2.12) , we have  

(2.19) 
2

2 2 2 24 1
4 14 44

1
8 ( ) 2 ( )

2 2
p u e F k K e

r

  
           

Equations (2.17) ,(2.18) and (2.19) lead to  

 

(2.20) 
2 2

2 2 4 1 1
4 14 44 11

2
8 ( ) 4 ( )

2 2
p u e F

r

   
             

From equations (2.14) and (2.20) , we have  

(2.21) 
2 2

2 4 1 1
14

3 3 3
8 ( 3( )

4 4
F e

r

   
    
       

 
 

Following Hehl’s [4,5] approach by redefining pressure and density as  

(2.22) 
22p p K  ,       

22 K     

 Equations (2.16) , (2.18) and (2.19) can be written as  

(2.23)        1 4
1 4 148 ( )

2
p u u

 
       

(2.24)      
2

2 21 1
1 11 148 ( ) 2 ( )p u e F

n r

 
        

(2.25)            
2

2 24 1
4 44 148 ( ) 2 ( )

2
p u e F

r

 
        

 

3. Solution of the Field Equations : 

                                       We try to find the solution i.e. construct the model in the following 

different cases. 

(i) 14 10, 0F u    (i.e. commoving co –ordinates ) 
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(ii) 
14 10, 0F u   

(iii) 
14 14 10, 0, 0F u    

A.  Model I : Here we taken 
1 0u   , 

14 0F   

      In equation (2.24)if we put 
1 0u  , we get  

      (3.1)          
2

14 2 1 1 112 ( )
4 2 2

e F
r

   
    

From equation (2.23) we have  

(3.2)         
14 1 42 0     

which on integration yields  

(3.3)    
2

( ) ( )e r t  


   

where   and   are functions of r and t respectively . Hence the line element is given by 

(3.4)   2 2 2 2 2 2 2 2

2

1
( sin )

( )
ds dr r d r d dt  

 
  


  

SOME PHYSICAL AND GEOMETRICAL FEATURES 

(3.5)    2 2 2 2 1
1 4 44 11

3
8 16 3( ) ( ) 2p k

r


       

 
       

 
 

(3.6)     2 2 2 21
4 1 118 3( ) 3( ) 16 K

r


      

 
      

 
 

       The non – zero components of the flow vector 
4u  is given by  

  (3.7)   
4u =  

1
 


  

The reality conditions (Ellis[5]) given by  

(3.8) 0p    

(3.9) 3 0p    

Give  

(3.10) 2 21
44 11 32 0k

r


       

(3.11)   2 2 2 21
1 4 44( ) 64 0k

r


     

 
      

 
 

      
14F  is given by  

   (3.12)    

1
3

2
14

14 11( )F
r


  


 

   
 
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The expansion  , rotation 
ijw  are shear 

ij are givn by  

(3.13)              
iju   

(3.14)                
ij ij jiw u u     

 (3.15)              
1

3
ij ij ji iju u h      

where   ( )ij ij i jh g u u   are found to be  

(3.16)    
43   

(3.17)          0ijw   

(3.18)           0ij   

               Hence we see that model (3.4) giving the distribution of charged perfect fluid is 

expanding with time but non – rotating and non – shearing. 

4. MODEL II :  

          Here we take 
14 0F   , 

1 0u   

  Then from equations (2.23) , (2.24) and (2.25) , we have 

(4.1)        
2 2

2 2 21 4 1 1 1 1
11 14 1 4 44 11 44 14 1 4

2

2 2 2
r r

r r r r

     
       

     
             

    
 

Solution of (4.1) using Monge’s method is found to be  

(4.2)                
2

2 2 216e A f A r t t Bt


    
 

 

where Aand B are constants. 

Hence the metric (2.1) takes the forms 

(4.3)        
2

2 2 2 2 2 2 2 2 2 2 216 sinds A f A r t t Bt dr r d r d dt  


       
 

 

The solution obtained by Singh and Abdussattar [16] is a particular case of (4.3) with B=0. 

Also when B=0 , the metric (4.3) transforms to Robertson Walker metric of constant negative 

curvature . 

            The pressure and density for the model (4.3) are given by  

(4.4)        

     2 2 2 2

2 2

1 4 1
8 2 '' 3 ' 12 ' 6 2 1 3 16

16 16

A
P f f Bt f Af f Bt B At B k

A A


 

 
                

 
  

   And  
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(4.5)     2 2 2

2

1 3 '( )
8 3 1 4 ' 6 2 1 ' 16

16 4

f f Bt
A f B At f k

A A
  

 
       

 
    

 where 2 2( )A r t t     and a prime denotes differentiation with respect to its argument. 

 

                     The non – vanishing parts of flow vector are 
1u  and 

4u  given by  

 (4.6)        
2

1

8

( ) 1 4

A r
u

r Bt A






 
 

  (4.7)         4

4 (2 1)

( ) 1 4

A At
u

f Bt A




 
 

The reality conditions (Ellis , 1971) give  

(4.8)   2

2

( )(1 4 )

256

Bt f A
K





 
 also the second reality condition (3.9) gives 

(4.9)   

     
2

2 2 2

2 2 2

33(1 4 ) 3
'' ' 2 ' 2 1 ' 32

10 8 16

BA
f f Bt f Af f Bt B At f k

A A A





             

The expression for expansion  , rotation 
ijw  and shear 

ij  are given by 

(4.10)       
3

2 ' 1 4 2 1
4 1 4

A f Bt f A B At
A A

 


       


 

 (4.11)   
2

14 2

4

( ) 1 4

A rB
w

f Bt A


 
 

(4.12(a))  
2 2

11 3

2 2

8 (2 1)(1 4 4 )

( ) (1 4 )

AB At A A r

f Bt A






  


 

 

(4.12(b))   
2

2

22 33 2

8 (2 1)
sin

( ) 1 4

ABr At

f Bt A
 




 

 
 

(4.12(c))   
    
 

2

44 3
2

2

4 (2 1) 2 2 1 1 4

( ) 1 4

AB At At A

f Bt A






   


 

 

(4.12(d))  
  

 

22

14 3
2

2

4 4 2 1 1 4

( ) 1 4

A Br At A

f Bt A






  


 
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The flow vector 
iu   does not satisfy 

,i ju  ju  = 0 in general and threrfore flow is non – 

geodetic in general. Sothe model is expanding , rotating , shearing but non – geodetic in 

general. 

5. MODEL III   

   In this case equation (4.1) reduces to 

(5.1)  
2 2

2 21 4 1 1 1 1
11 44 11 44 1 4

2

2 2 2r r r r

     
     

     
           

    
 

Integration of 
14 0   provides us  

(5.2)           ( ) ( )r t     

By finding ( )r  and ( )t ,  can be found and thus metric can be written from (2.1). 

6. CONCLUSION AND DISCUSSION: 

                             In this paper taking conformally flat non – static spherically symmetric 

metric , we have solved Einstein – Cartan - Maxwell field equations in different cases e.g. 

by taking 
1 0u   i.e. in co-moving co-ordinates  and also 

14 0F   while in other case ,we 

have taken 
1 0u   but 

14 0F  .We have found different physical and geometrical features for 

the models we have constructed , we have shown that model I (3.4) for charged perfect fluid 

distribution is expanding with time but non- rotating and non – shearing . Model II givenby 

(4.3) provides results of Singh and Abdussattar [16] when B=0.Also when B=0, the metric 

(4.3) transforms to Robertson – Walker metric of constant negative curvature. Also in model 

II, since the flow vector does not satisfy , 0j

i ju u   in general and hence flow is non – 

geodesic. So, this model is expanding, rotating, shearing but non – geodetic in general. Our 

study made here is very useful for astrophysics and astronomical investigation. 
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